Combination of Annealing Particle Filter and Belief Propagation for 3D Upper Body Tracking
نویسندگان
چکیده
منابع مشابه
Combination of Annealing Particle Filter and Belief Propagation for 3D Upper Body Tracking
3D upper body tracking and modeling is a topic greatly studied by the computer vision society because it is useful in a great number of applications such as human machine interface, companion robots animation or human activity analysis. However there is a challenging problem: the complexity of usual tracking algorithms, that exponentially increases with the dimension of the state vector, become...
متن کاملMulticues 3D Monocular Upper Body Tracking Using Constrained Belief Propagation
This paper describes a method for articulated 3D upper body tracking in monocular scenes using a graphical model to represent an articulated body structure. Belief propagation on factor graphs is used to compute the marginal probabilities of limbs. The body model is a loose-limbed model including attraction factors between adjacent limbs and constraints to reject poses resulting in collisions. ...
متن کاملUsing Gaussian Process Annealing Particle Filter for 3D Human Tracking
We present an approach for human body parts tracking in 3D with prelearned motion models using multiple cameras. Gaussian process annealing particle filter is proposed for tracking in order to reduce the dimensionality of the problem and to increase the tracker’s stability and robustness. Comparing with a regular annealed particle filter-based tracker, we show that our algorithm can track bette...
متن کاملBelief Propagation and Beyond for Particle Tracking
We describe a novel approach to statistical learning from particles tracked while moving in a random environment. The problem consists in inferring properties of the environment from recorded snapshots. We consider here the case of a fluid seeded with identical passive particles that diffuse and are advected by a flow. Our approach rests on efficient algorithms to estimate the weighted number o...
متن کاملTracking Targets Via Particle Based Belief Propagation
We first formulate multiple targets tracking problem in a dynamic Markov network(DMN)which is derived from a MRFs for joint target state and a binary process for occlusion of dual adjacent targets. We then propose to embed a novel Particle based Belief Propagation algorithm into Markov Chain Monte Carlo approach (MCMC) to obtain the maximum a posteriori (MAP) estimation in the DMN. In the messa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Bionics and Biomechanics
سال: 2012
ISSN: 1176-2322,1754-2103
DOI: 10.1155/2012/178981